

Date Planned : / /	Daily Tutorial Sheet-2	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level-1	Exact Duration :		

Actual Date of Attempt : / /			Daily	Daily Tutorial Sheet-2 Level-1		Expected Duration : 90 Min				
						Exact Duration :				
16.	The e	The expression of average speed of molecules of a gas is given as:								
	(A)	$u_{av} = \sqrt{\frac{8RT}{\pi m}}$	(B)	$u_{av} = \sqrt{\frac{8RT}{\pi M}}$	(C)	$u_{av} = \sqrt{\frac{8kT}{\pi M}}$	(D)	$u_{av} = \sqrt{\frac{8RT}{M}}$		
17.	For a	For a given gas, which of the following relationships is correct at a given temperature?								
	(A)	$u_{rms} > u_{av} >$	u _{mp}		(B)	$u_{rms} < u_{av} < v$	1 _{mp}			
	(C)	$u_{rms} > u_{av} < v$	$1_{ m mp}$		(D)	$u_{rms} < u_{av} >$	u _{mp}			
18.	Which of the following is expected to possess the largest root mean squatemperature?							uare speed at the same		
	(A)	H_2S	(B)	NH_3	(C)	SO_2	(D)	CO_2		
19.		The rms speed of hydrogen is $\sqrt{7}$ times the rms speed to nitrogen. If T is the temperature of the gas, then:								
	(A)	$T(H_2) = T(N_2)$	2)		(B)	. 2 2	•			
	(C)	$T(H_2) < T(N_2$	2)		(D)	$T(H_2) = \sqrt{7}T$	(N_2)			
20.		The density of a gas at 27°C and 1 atm is d. At what temperature would its density be 0.75d, if the pressure is kept constant?								
	(A)	20°C	(B)	30°C	(C)	400 K	(D)	300 K		
21.		A certain gas effuses through a small opening of a vessel at a rate which is exactly one-fifth the rate at which helium does the same. Thus, the molecular weight of the gas is :								
	(A)	100		75	(C)	50	(D)	25		
22.		The weight of CH_4 in a 9L cylinder at $27^{\circ}C$ temperature and 16 atm pressure is $(R = 0.08\ L\ atm$								
	K ⁻¹ m	,	(T)	00.0	(~)		(-)	40.0		
	(A)	9.6g		96.0 g	(C)	4.8 g	(D)	48.0 g		
23.	The ra	The ratio of the most probable speed, average speed and root-mean-square speed of a gas molecule is: (A) $1:1.128:1.224$ (B) $1:1.128:1.424$								
	(A) (C)	1:2.128:1.			(B) (D)	1:1.128:1.4				
24.	Equal	Equal masses of methane and hydrogen are mixed in an empty container at 25°C. The fraction of the								
	_	pressure exerted			(0)	1.70	(T)	10/17		
~ =	(A)	1/12		8/9	(C)	1/6	(D)	16/17		
25 .	_	A gas cylinder containing cooking gas can withstand a pressure of 14.9 atm. The pressure gauge of								
	-	cylinder indicates 12 atm at $27^{\circ}C$. Due to sudden fire in the building the temperature starts rising. The temperature at which cylinder will explode is:								
	(A)	87.5°C	(B)	99.5°C	(C)	115.5°C	(D)	135.5°C		
26.		At what temperature do the average speed of $CH_4(g)$ molecules equal the average speed of O_2 molecules at 300 K?								
	(A)	150 K	(B)	900 K	(C)	600 K	(D)	300 K		

27. Which of the following expressions is correct?

(A) $v_{rms} = \sqrt{\frac{3RT}{M}}$ (B) $v_{rms} = \sqrt{\frac{3p}{\rho}}$ (C) $PV = \frac{1}{3}mV_{rms}^2$ (D) All of these

28. Consider the reaction $2Al(s) + 3Cl_2(g) \longrightarrow 2AlCl_3(s)$. The approximate volume of chlorine that would react with 324 g of aluminium at STP is :

(A) 121 L (B) 134 L (C) 260 L (D) 403 L

29. In a classroom, there are 13 rows of students. A teacher releases laughing gas (N_2O) from the front and tear gas (molar mass 176) from the rear of the classroom simultaneously. Students of which row from the front will have a tendency to weep and smile simultaneously?

(A) 9^{th} row (B) 12^{th} row (C) 7^{th} row (D) 10^{th} row

30. The vapour density of a mixture containing $N_2(g)$ and $O_2(g)$ is 14.4. The percentage of N_2 in the mixture is:

(A) 20% **(B)** 80% **(C)** 60% **(D)** 50%